Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl.
نویسندگان
چکیده
During salamander limb regeneration, only the structures distal to the amputation plane are regenerated, a property known as the rule of distal transformation. Multiple cell types are involved in limb regeneration; therefore, determining which cell types participate in distal transformation is important for understanding how the proximo-distal outcome of regeneration is achieved. We show that connective tissue-derived blastema cells obey the rule of distal transformation. They also have nuclear MEIS, which can act as an upper arm identity regulator, only upon upper arm amputation. By contrast, myogenic cells do not obey the rule of distal transformation and display nuclear MEIS upon amputation at any proximo-distal level. These results indicate that connective tissue cells, but not myogenic cells, are involved in establishing the proximo-distal outcome of regeneration and are likely to guide muscle patterning. Moreover, we show that, similarly to limb development, muscle patterning in regeneration is influenced by β-catenin signalling.
منابع مشابه
Tissue‐specific reactions to positional discontinuities in the regenerating axolotl limb
We investigated cellular contributions to intercalary regenerates and 180° supernumerary limbs during axolotl limb regeneration using the cell autonomous GFP marker and exchanged blastemas between white and GFP animals. After distal blastemas were grafted to proximal levels tissues of the intercalary regenerate behaved independently with regard to the law of distal transformation; graft epiderm...
متن کاملEstablishing a new animal model for muscle regeneration studies
Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system. Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...
متن کاملLive Imaging of Axolotl Digit Regeneration Reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools
Connective tissues-skeleton, dermis, pericytes, fascia-are a key cell source for regenerating the patterned skeleton during axolotl appendage regeneration. This complexity has made it difficult to identify the cells that regenerate skeletal tissue. Inability to identify these cells has impeded a mechanistic understanding of blastema formation. By tracing cells during digit tip regeneration usin...
متن کاملFundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species.
Salamanders regenerate appendages via a progenitor pool called the blastema. The cellular mechanisms underlying regeneration of muscle have been much debated but have remained unclear. Here we applied Cre-loxP genetic fate mapping to skeletal muscle during limb regeneration in two salamander species, Notophthalmus viridescens (newt) and Ambystoma mexicanum (axolotl). Remarkably, we found that m...
متن کاملRegeneration of reversed aneurogenic arms of the axolotl.
Aneurogenic arms of young axolotls were implanted into the flank as heterotopic autografts with reversed proximo-distal orientation. The formerly proximal ends of such arms regressed to a variable extent, and then either regenerated or could do so following a second amputation. The regenerate always contained a complete sequence of skeletal elements between the adjacent stump skeleton and termi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 140 3 شماره
صفحات -
تاریخ انتشار 2013